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Abstract

Stochastic versions of stability equations are de-

veloped in order to develop integrated models of
transition and turbulence and to understand the

effects of uncertain initial conditions on distur-

bance growth. Stochastic forms of the resonant

triad equations, a high Reynolds number asymp-

totic theory, and the parabolized stability equa-

tions are developed.

1 Introduction

Integrated modeling of transition and turbulence

is critical to accurate CFD predictions for many

aerodynamic applications such as high-lift airfoil

configurations and the Mars flyer proposed by
NASA. Whereas most transition-sensitized tur-

bulence models can predict such flows provided

the transition location is specified in advance, no

single model can predict this location in all cases.

The practical and theoretical importance of

this problem justify an attempt to formulate and
solve it from a fundamental theoretical view-

point. Our approach is to develop stochastic ver-

sions of existing deterministic transition mod-

els. The resulting statistical transition theories

both naturally link transition theory to turbulence

modeling and facilitate analysis of the effects of

uncertain initial conditions on disturbance evolu-

tion.

A statistical transition theory can be based on

transition theories with different levels of sophis-

tication and accuracy and with different ranges of

applicability. This paper presents stochastic ver-

sions of the resonant triad model, a representative

high Reynolds number asymptotic theory, and the

parabolized stability equations [PSE].

The analysis begins by considering the

stochastic aspects of nonlinear disturbance evo-

lution in a laminar boundary layer. There are

only a few excited modes; the stochastic aspect

of the problem arises from the dependence of the
disturbance evolution on randomness in the ini-

tial conditions. As an example, the resonant triad

model [3] is treated as a problem with random

initial conditions in Sects 2-3.

Although a complete statistical solution of

this problem can be given by deriving an evo-

lution equation for the joint probability density

function of the modal amplitudes [18], the cal-

culations required are excessive. Methods like

the 'particle method' [17] offer some advantage,

but remain computation intensive. An alterna-

tive is offered by the Wiener-Hermite expansion,

or 'polynomial chaos' [4]. Wiener-Hermite ex-

pansions are applied to random triad evolution in

Sect 4. This analysis also offers a closure scheme

in problems in which the joint probability density

function is determined by an infinite hierarchy of

equations (closure problem).

The possibility of treating transition as a

'weak turbulence' [20] of Tollmien-Schlichting
waves is raised in Sect 5. Phase incoherence due

to multi-mode coupling is proposed as a mech-

anism to control disturbance amplitude growth.

This line of investigation leads to a multi-mode

generalization of a typical high Reynolds number

asymptotic theory.

A complete statistical transition theory would
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providea singlesetof equationsdescribingthe
entiretransitionprocess,frominitial disturbance
growth,throughlaminarbreakdown,to fully de-
velopedturbulence. This applicationrequires
treatingtransitionalflows, like turbulentflows,
asmulti-modenonlinearstochasticsystems.The
onlypracticaltransitionmodelwithasufficiently
widescopefor thisapplicationis theparabolized
stabilityequations[PSE][5].

In orderto formulatethePSEmodelstatis-
tically, theyarefirst embeddedin a compatible
turbulenceclosure. Kraichnan[9] had already
proposedthat transitionalflowsbe analyzedby
thedirectinteractionapproximation[DIA]; this
suggestionis adoptedherebut in thecontextof a
parabolizedreformulationof DIA consistentwith
PSE.

The result is a 'PSE Langevinmodel' in
whichtheusualPSEequationsaresupplemented
by a generalizeddampingand a randomforc-
ing. Thisgeneralmodelis formulated,andit is
shownthat it couldbe reduced,for example,to
aSmagorinsky-likesubgridmodel.Thus,evenif
theLangevinmodelis toocomplexfor practical
use,simplificationscanbe introduced,but with
theadvantagethatthesourcesof errorareknown
in advance,andcorrectionscanbebasedon the
moregeneraltheory.

2 Resonant triad model

The simplest model of nonlinear disturbance in-

teractions is Craik's resonant triad model [3],

which describes nonlinear interactions through a

viscous critical layer. A more detailed discussion

of this problem appears in our report [18].

The resonant triad model describes the

weakly nonlinear evolution of the amplitudes of

a resonant triad of Tollmien-Schlichting waves

consisting of a two-dimensional primary wave

and a pair of oblique subharmonics. Because this

system is not conservative, all three modes can

grow nonlinearly; the resonance condition pro-

motes especially effective nonlinear transfer to
the subharmonics.

Craik's model [3] was modified to allow for

the effects of the slow growth of the mean bound-

ary layer and detuning (compare [21]). Defining

amplitude-phase variables by bi = rie i°i where

1 < i < 3, the amplitude evolution equations de-

pend only on the single phase variable

0=01@02 -- 03 (1)

which satisfies an equation of the form

6 = R3,12 sin((_3 (y) -- 0)

-R2,31 sin(0 + _2(x))

-R1,23 sin(0 + 01 (x)) (2)

where the coefficients Ri,jk are determined by the

theory.

A resonant triad typically evolves as follows.

First, the subharmonics grow through parametric

excitation by the primary; the amplitudes of the

subharmonics tend to equalize and a condition of

phase-locking (0 _ 0) develops. After the onset

of phase-locking, all three amplitudes undergo

explosive nonlinear growth, leading to a finite-

time singularity of the solution [19]. Amplifica-

tion can occur if the subharmonics are linearly

stable and even if the primary is linearly stable

[13].

Although these phases of triad evolution are

generic, the details of the evolution can depend

on the initial conditions, especially during the

early to moderate time evolution. To understand

this dependence, a weighted trajectory analysis

suggested by the particle method [17] of compu-

tational combustion theory was applied: a fam-

ily of triads was computed with uniformly dis-

tributed initial phase. The result is a family of

trajectories, each of which can be considered

equally likely. If desired, an approximate ampli-

tude evolution pdf could be obtained from this

information [18].

The results are shown in Fig. 1. The top

graph shows the phase evolution as a function

of Reynolds number and the bottom graph shows

the amplitudes of the primary and subharmonics

as functions of Reynolds number for various ini-

tial values of 0. The bottom figure can be com-

pared to the amplitude evolution shown in Fig. 2

of Ref. [21].

175.2



Stochasticmodelingoflaminar-turbulen|transi|ion

TwofeaturesarenoticeablefromFig. 1:first,
thepoint wherethe subharmonicsovertakethe
primarydependsontheinitialphase,albeitrather
weaklyin thiscase,andsecond,the locationof
thispointappearscloselylinkedto thedevelop-
mentof phasecoherence.

The connectionjust notedbetweensubhar-
monic amplificationandinitial phasehasbeen
verifiedexperimentally.Fig.2 showstheexper-
imentallymeasuredsubharmonicamplitude(top
graph)at afixeddownstreamlocationasafunc-
tion of the initial phasedifference.Thebottom
graphshowstheresultof acalculationusingthe
resonanttriad modelwith similar initial condi-
tions.
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Fig. 1 Phase locking and subharmonic amplitude

equalization during triad evolution in the problem

analyzed in Ref. [21].

To explore the connection between initial

phase and subharmonic amplification in more de-

tail, the initial conditions analyzed in [21] were

modified slightly: initial subharmonic ampli-
tudes were Gaussian with mean one-half the ini-

tial primary amplitude and standard deviations

ten percent of the mean. The result is shown in

Fig. 3. The effect of initial phase difference on

subharmonic growth is considerably enhanced by

this change.
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Fig. 2 Effect of initial phase on subharmonic

growth: experimental comparison

These results suggest using subharmonic am-

plification as the basis of a heuristic transition cri-

terion: the transition location is set at the point

where the subharmonic amplitudes equal the pri-

mary. The results of Fig. 3 correspond to the

probability density of transition onset location in

Fig. 4. This result is only intended to illustrate

how a statistical transition theory might be ap-
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plied to predict an uncertain transition point. The
crossover location is not the same as the tran-

sition onset location, which could not be pre-

dicted by the resonant triad interaction model in

any case; however, the amplitude crossover does

harbinger the onset of stronger nonlinear interac-

tions and hence the approach of transition.
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Fig. 3 Effect of initial phase on triad evolution.
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Fig. 4 Probability density of transition onset lo-
cati on

3 Phase correlations and amplitude growth

To investigate the connection between phase co-

herence and subharmonic growth more closely,

the computation was repeated with the phase

evolution in Eq. (2) modified by adding white

noise of various amplitudes to its right hand side.

Specifically, Eq. (2) was replaced by

6 = R3,12 sin(03 (x) - 0)

-R2,31 sin(0 + _)2(x))

-R1,23sin(O+Ol(X)) +Aw(x) (3)

where w(x) is a white noise process and the am-

plitude A varied between 0.010 and 0.200.

At the smallest noise amplitude A = 0.010,

the phase locking is only weakly perturbed: the

phase fluctuates by about 0. lrc about the deter-

ministic value. Corresponding to this weak dis-

turbance of the growth of phase correlations is a

very weak perturbation of the nonlinear ampli-

tude growth (not shown). Fig. 5 shows the ampli-

tude evolution corresponding to the highest noise

level, A = 0.200. In this case, the phase evolu-

tion is almost entirely dominated by the random

forcing. Correspondingly, subharmonic growth

is almost entirely suppressed. At an intermediate

level of phase randomization, controlled growth

can occur.

It is crucial that in Fig. 5, the suppression

of energy growth in the subharmonics has been

accomplished entirely through phase randomiza-

tion; energy is not removed from the disturbances

directly. The calculation demonstrates that the

phase-locked attractor with explosive subhar-

monic growth can be destroyed by stochasticity.

Although the triad theory provides a plau-

sible explanation for the development of three-

dimensional disturbances in transition, the pre-

diction of a finite-time singularity obviously lim-

its its applicability to relatively early phases of

disturbance growth. A multi-mode triad theory

[21] would be a link between transition and tur-

bulence if phase randomization could be shown

to occur as a consequence of multi-mode cou-

pling. That is, as one set of subharmonics grows,

parametric excitation of higher-order subharmon-

ics might occur by the same mechanism. Could

nonlinear coupling of all of these modes induce

phase randomization? If so, an ensemble of in-

teracting Tollmien-Schlichting waves could pro-

vide a transition scenario with realistic amplitude

growth instead of a finite-time singularity.
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Fig. 5 Effect of random noise perturbation of

phase evolution equation on subharmonic ampli-

fication during resonant triad evolution.

This scenario would amount to a 'weak tur-

bulence' [20] description of transitional flow. In

this hypothetical theory, the modal frequencies

would be determined by the dispersion relation

of a linear theory, the weakly non-parallel Orr-

Sommerfeld equation in this case, but weak non-

linear interactions would be allowed and would

even be crucial to a realistic of disturbance am-

plitude growth through phase randomization.

Unfortunately, this picture encounters diffi-

culties. Consideration of nonlinear critical layers

suggests that the nonlinear coupling among reso-

nant triads is itself highly constrained (X Wu, pri-

vate communication) and would not lead directly

to multi-mode coupling. Moreover, the idea of

weak turbulence of linearly non-neutral modes

may be questionable (P Hall, private communi-

cation).

4 Critical layer theories

The algebraic nonlinearity in Craik's triad equa-

tions does not completely represent the distur-

bance dynamics within the critical layer, where

nonlinear effects predominate. More careful

consideration of critical layer dynamics lead

to integro-differential equations for disturbance

growth: an example is the theory of Mankbadi

et al [12]. This theory offers a deterministic

mechanism by which subharmonic growth is re-
duced due to oscillations of the subharmonic am-

plitudes. An ad hoc generalization of this theory

to multiple interacting triads was formulated:

A°i = Go(x)A°i (x) + _± (x)A + (x)A_ (x)

+1A+ (y)l 2 ÷ IA_ (y) 12}

A+: "+Ix/A+(x/+ff

÷i_l + (x) foXdy Z { IA°(y) l2
P

÷l A+ (y)l 2 ÷ IA; (y) 12}

A/: (x)+Sy +

÷iL4,. (x) _dy _ { IA°(y) 12
P

+lAp+ (y)l 2 + IA; (y) l2} (4)

A ten-mode system was solved with initial

conditions with random initial phases. The re-

sults are shown in Fig. 6 The amplitudes are nor-

malized by the same initial amplitude, so that
the effect of initial randomization can be seen

in the graphs. The results are not much differ-

ent than when the initial amplitudes are deter-

ministic. The mode amplitudes appear to evolve

roughly independently.

There appears to be no tendency to phase ran-

domization due to multi-mode coupling in this

system. Preliminary consideration of multimode

coupling through cubic mean flow interactions

(X Wu, private communication) did not appear to

lead to phase randomization, but this possibility

may deserve further investigation.

5 Initial condition dependence modeling by

polynomial chaos

A complete statistical description of triad evo-

lution is given by the joint probability density

function [pdf] of the complex modal amplitudes.

Because triad evolution is described by ordinary

differential equations, derivation of the evolution

equation of this joint pdf is straightforward. The

large dimensionality of the resulting equation (a
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Fig. 6 Primary (solid) and subharmonic (dashed)

amplitude evolution m ten-mode system with

random initial phases.

triad is determined by three complex amplitudes,

hence the joint pdf evolves in a 6-dimensional

space) makes numerical solution less straightfor-

ward.

Although the computational difficulties can

be mitigated by alternate approaches like the

'particle method' [ 17], even the possibility of de-

riving a closed pdf evolution equation is lost if the

modal evolution equation is history-dependent,

as in the high Reynolds number asymptotic theo-

ries, or if higher order spatial derivatives occur, as

in the PSE or higher order triad theories [21 ]. The

coupling of information from different points im-

mediately generates a closure problem, since the

single-point pdf depends on the two-point pdf,

and so on.

The Wiener-Hermite expansion has recently

been revisited, generalized, and re-named 'poly-

nomial chaos' [4]. If a nonlinear problem can

be characterized by a finite number of stochastic

variables, then Wiener-Hermite expansion yields

a systematic convergent expansion of the solu-

tion in polynomials in the stochastic variables.

The lowest order response is purely Gaussian, but

the higher order terms give non-Gaussian correc-
tions.

This is an attractive approach to character-

izing initial-condition sensitivity of transition,

since the initial conditions can be chosen as

the stochastic variables. Moreover, truncating a

Wiener-Hermite expansion also leads to a closure

for problems which generate infinite unclosed hi-
erarchies.

However, an important criticism of truncated

Wiener-Hermite expansions for multi-mode non-

linear stochastic systems was made by Orszag

[15], who observed that in truncated Wiener-

Hermite expansions, nonlinearity implies non-

Gaussianity, because only in a linear system does

the expansion terminate with the first term. But

the inviscid thermal equilibrium ensembles of

statistical turbulence theory are both nonlinear
and Gaussian. The truncated Wiener-Hermite ex-

pansion is inconsistent with this possibility. This

inconsistency was confirmed by showing that the

Wiener-Hermite expansion for a simple problem
of conservative three-wave interaction truncated

at lowest nontrivial order cannot maintain the

statistics of the thermal equilibrium solution even

if they are given as initial conditions.

This result raises the question whether

higher-order truncation might lead to more sat-

isfactory results. A calculation using ninth or-

der Wiener-Hermite expansion is shown in Fig. 7:

the solution maintains the thermal equilibrium

solution much longer than the lowest order trun-

cation, but ultimately exhibits windows of non-

convergence. Despite these difficulties, we be-

lieve that polynomial chaos could be helpful in

understanding the initial condition sensitivity of

transitional flows and are currently applying this

approach to study the problem of the evolution of

G/Srtler vortices.

6 Parabolized stability equations

Parabolized stability equations [PSE] ([5], [2])

are a general, heuristic approach to transition cal-

culations. It is perhaps the most successful cur-

rent theory, since it has been used to predict the

sudden increase in skin friction following transi-

tion onset [2]. Nevertheless, the success is only

partial, since the calculations cannot be contin-

ued into the fully turbulent region. The difficulty

could originate either in the rapid broadening of
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Fig. 7 Three mode system, solved using ninth or-

der polynomial chaos.

the spectrum or in limitations of the parabolizing

assumptions.

The problem of spectral broadening can be

attacked by developing PSE 'subgrid' models.

A conventional Smagorinksy model, modified so

that the eddy viscosity approaches zero in the

laminar region, could be applied.
This section will outline a more theoretical

approach based on embedding PSE in a two-

point turbulence closure. Such a marriage of a

two-point closure with a transition theory is nat-

ural because like transition theories, two-point
closures are formulated in terms of modal am-

plitudes. Moreover, two-point closures can be

formulated for arbitrary separation of large-scale

and fluctuating motion, not just for Reynolds av-

eraging. This means that subgrid models and

'phase averaged' models are derived without any

change of method.

Two-point turbulence closures make no as-

sumptions about Reynolds number, the form of

correlation functions, stationarity, homogeneity,

isotropy, or wall proximity. In particular, the

correlation function can be Kolmogorov, self-

similar, or not as the dynamics requires. This fea-

ture is critical for computing transitional flows,

in which the stochastic aspects can be inhomoge-

neous and non-universal.

The closure equations include both mean

flow-wave interactions and wave-wave interac-

tions. Therefore, these models can reduce to

quasi-linear theories [11], [14] if the dynamics

requires it. But since nonlinearity is not enitrely

suppressed, closure models admit the stochas-

Stochastic modeling of laminar-turbulent transition

tic relaxation which is absent from quasi-linear

models like [11] and [14] and which can conse-

quently be overly sensitive to initial conditions

[16].

The derivation consists of the following

steps:

(1) We apply the direct interaction approx-

imation [DIA] closure [8]. DIA can be un-

derstood as a generalized stress transport model

for the correlation function (which integrates to

the Reynolds stress) and the modal time-scales.

Salient points about this closure are: first, unlike

the e equation, the time scale (response) equation

is rationally formulated and second, both linear

and nonlinear time-scales are possible. The dy-

namics decides between them, not the modeler.

(2) The physical-space formulation of DIA

[9] is combined with the spectral formulation

[10] in a form appropriate to the semi-spectral
formulation of PSE.

(3) Parabolizing approximations like those of

PSE are introduced so that the downstream evo-

lution variable becomes causal. The result is a

semi-parabolic model in which downstream his-

tory integrals appear.

(4) The downstream evolution is Markovian-

ized, again consistent with PSE. The result is a

fully parabolic model with respect to downstream

evolution. The projection-independence of the

formulation is used to introduced the parabolized
turbulence closure as a model for unresolved PSE

modes.

For applications to two-dimensional mean

flow, the fluctuations are considered stationary

in time and spanwise homogeneous; accordingly

the partial Fourier representation

Um(X,t) =/d_d_Oum(X,y,_,_o)e _ o_t) (5)

is appropriate.

Eliminate the pressure using the solenoidal

projection operator

P'll= V 2VxVxll (6)

so that in index notation (P. u)i = Pijuj and de-
fine

= + (7)
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Define Um,(X.t;x',t')= (Um(X,t)u,(x',t')).

The result of applying steps (1) - (4) above is the

PSE Langevin model

-i0),;(x,y,¢,0))+P,,(a/ay,i¢)×

3u, 3u,Ux(x,Y)_x (x,Y, _, 0)) + Uy(x,y) oy

8U, 8U,

+ _;(x,y),x(_.y, ¢,0))+ _-y (_,y),y
+P,, (a/Oy,;¢);¢mVm(_,y),,(_,y,¢,0))

= -P,.m,(a/Oy,;¢)/de'g0)' ×

"_(x,Y,¢- ¢',co- 0)'),,(_,y,¢',co')
+v(a2/ay2- ¢2),;(x,y,¢,0))

-Pir(a/ay, i¢)exp [i /'oXdx' o(x',y, ¢,0))] ×

,r(_,y,¢,0))
1

f dy'qir(X,y,y', _, 0))Ur(X,y', _, 0))2

+S.(x,y,¢,0)) (8)

These are simply the PSE equations with two

added terms: the damping factor in 3], and the

random force f. The damping factor acts in this

model as a subgrid viscosity. It is defined by

rlis(X,y,_,0)) = Pimn(a/ay, i¢) f d¢'d0)' ×

Pmrs(O/Oy, i¢-- i¢') ×

0(x,y,¢,¢- ¢',¢',0),0)- 0)',0)')×
U,r(X,y, ¢', 0)') (9)

where the time-scale 0 models the downstream

history dependence, somewhat like the quantity

c_ in PSE. It will be defined later.

The random force is defined by

f.(x,y,¢,0)) = -iPimn(a/ay, i¢)w(x) ×

f d¢;d0); f dyn×

O1/2(x,y,y n, ¢, ¢ -- ¢', ¢', 0), 0) -- 0)'; 0)') ×

Cm(X,y,y', ¢ - ¢', 0)- 0)') ×

¢,(x,y,y",¢',oY) (10)

where _ is a random Gaussian field with the same

correlation function as the velocity. In effect, the

are the velocity field but with random phases.

In Eq. (10), w(x) denotes spatial white noise with
unit variance.

The correlation function U satisfies the evo-

lution equation,

-i0)u,j(_,y,y',¢,0))+ G(a /ay, i¢)×

8u, j 8u, jUx(x,Y)_-f-x (x,y, Yt, ¢, 0)) + Uy(x,y) oy

3U,3xx ' 3U, J(x,y)Uxj(X,y,y , ¢,0)) + _-v (x,y)Uyj

+Pin(a/ay, i¢)iCmUm(x,y)Unj(x,y,y t, ¢, 0))

= v(32/3y2-_2)Uu(x,y,j,_,0))

1 f d " _x "o y n;_t ,y,y ,¢,0))Ur/x,y",y',L0))

+_.,_,(O/3y,i¢)pj_,(O/3y,i¢)/ d¢'d0)'dy"
tt t 0)0;;,_,_,_,,(_,y,y,¢,¢- ¢',¢, ,0)- co',co')

gm r ! /t_,_x,y,y , ¢- ¢',0)- co')×
gns,(X,f ,y", ¢',0)') (11)

The simplified 0 equation has the general
structure

30

ux(x,y)_(x,y) + Uy(x,y)_(x,y) + so

= v(o2/3y2)o(_,y)

1 fdCd0)n(x,y,¢,0))O(x,y,¢,0)) (12)2

where S is the total strain rate.

This model, which combines the effects of

large-scale motion through PSE with energy
drain and decorrelation due to small-scale motion

perhaps realizes the statement of Bayly, Orszag

and Herbert [1] that 'The most promising tools

at the moment are some kind of decomposi-

tion of the flow into coherent structures plus

pseudo-stochastic noise in such a way as to merge

purely deterministic instability theory with statis-

tical turbulence theory in a consistent and sensi-

ble way.'

In order to make a connection with standard

LES modeling, it is convenient to integrate the

modal evolution equation Eq. (8) with respect

to _ and 0): since the two-point dependence in

y is ignored, this integration reduces to the case
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of single-pointquantitiesconsideredin standard
LES.

Tobegin,ignoringwalleffects,set

P,mn(a/ay,i¢) a/ay (13)

Then approximating

f d¢'dco'O(x,y,¢,¢-¢',¢',¢o,¢o-¢o',¢o') ×

unr(x,y,¢',oJ)
OK (14)

the integrated subgrid term qu can be approxi-
mated as

_<_ ¢c,o_<_o_cdCdmtlir(X'Y' ¢' m)Ur(X,y, ¢, m)

 Ko u (x,y) (15)

where K is the subgrid kinetic energy and 0 is a

time scale. Since this is an eddy viscosity repre-

sentation of the subgrid stress in terms of the re-

solved velocity field, this is a Smagorinsky-type

subgrid eddy viscosity model with eddy viscos-

ity vt = K0 in which transport equations are pro-

vided for the quantities K and 0.

Standard LES models have been applied suc-

cessfully to transitional flows, despite the lack of

any apparent justification for such success. It is

interesting that the present calculation suggests

the somewhat novel approach of applying stan-

dard subgrid models to the PSE rather than to

the Navier-Stokes equations. The application is

non-standard, because PSE solves for wave am-

plitudes rather than the velocity field itself.

The advantage of the present derivation is that

having a more comprehensive theory, it will be

possible to address shortcomings of these simple

models in a systematic fashion.

These transport equations can also be approx-
imated to reveal their connection with common

heuristics. Namely, simplifying Eq. (11) for Uij,

the correlation function for subgrid modes, we

can write

OK OK

Ux(x,Y)_x (X,y)+ Uy(x,y)_fy(x,y)

Stochastic modeling of laminar-turbulent transition

au,,
+ _ (x,y)(Ux(X,y)uj(x,y))

OU_

÷ _-y (x,y)<Uy(X,y)uj(x,y)>

= V(O 2/Oy2)K(x,y)

1
2 f dCdmq(x,y,¢,m)U(x,y,¢,m)

1

J dCdmF(x,y, ¢, co) (16)

On the left side are the standard convection and

mean-flow production terms. The first term on

the right side is the viscous dissipation. For the

interpretation of the following terms, we refer to

the usual understanding of the DIA closure, in

which the term in r I represents a loss of energy

and the term in F represents a gain. In fact, these

terms are the energy transfer to small scales _ and

the production of subgrid motion by the resolved
scales.

The simplified 0 equation should be under-

stood as a substitute for the dissipation rate equa-
tion.

7 Conclusions

Stochastic versions of transition models have

been applied to the problems of initial condition

dependence in disturbance growth and the inte-

gration of transition and turbulence modeling.

The possibility of using uncertainty in initial

conditions to predict a probability density of tran-

sition location was illustrated using the resonant

triad theory. The application of Wiener-Hermite

expansion methods to transition has been dis-

cussed. Although fundamental objections to

truncated Wiener-Hermite expansions as descrip-

tions of multi-mode nonlinear systems exist, their

application to transition under uncertain initial

conditions may be sound and warrants further in-

vestigation.

Several models leading to integrated model-

ing of transition and turbulence have been inves-

tigated: the resonant triad model with random

forcing of the phase equation, a multi-mode crit-

ical layer theory, and a stochastic form of the

parabolized stability equations. The randomly
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forcedresonanttriadmodelwassuggestedasa
motivationfor a descriptionof transitionas a
weakturbulenceof Tollmien-Schlichtingwaves.
Althoughattractivein somerespects,furtherde-
velopmentof thispictureappearsproblematical.

A stochasticform of the PSE, a PSE
Langevinmodelwith randomforcing andgen-
eralizeddampingdeterminedby turbulenceclo-
sure,appearsto bea promisingapproachto in-
tegratedturbulence-transitionmodeling.Reduc-
tionof thismodelto aSmagorinskymodelunder
strongsimplifyingassumptionshasbeendemon-
strated.
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